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In this work, we propose a deep neural networks-based method to perform non-

parametric regression for functional data. The proposed estimators are based on sparsely

connected deep neural networks with rectifier linear unit (ReLU) activation function. We

provide the convergence rate of the proposed deep neural networks estimator in terms

of the empirical norm. Through Monte Carlo simulation studies, we examine the finite

sample performance of the proposed method. Finally, the proposed method is applied to

analyse positron emission tomography images of patients with Alzheimer's disease

obtained from the Alzheimer Disease Neuroimaging Initiative database.
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1 | INTRODUCTION

Functional data refer to curves or functions; that is, the data for each variable are viewed as smooth curves, surfaces or hypersurfaces evaluated

at a finite subset of some interval in 1D and 2D (e.g., some period of time, some range of pixels or voxels and so on). Functional data mean intrinsi-

cally infinite dimensional but are usually measured discretely. The high intrinsic dimensionality of these data poses challenges for both theory and

computation. Functional data analysis (FDA) has been a topic of increasing interest in the statistics community for recent decades. Ramsay

and Silverman (2005) and J. Wang et al. (2016) gave a comprehensive overview of FDA.

In FDA problems, estimation of mean functions is the fundamental first step; see Cardot (2000), Ferraty and Vieu (2006) and Rice and

Wu (2001), for example. Various methods exist that allow to estimate the regression function non-parametrically. Rice and Wu (2001) adopted

the mixed effect models where the mean function and the eigenfunctions were represented with B-splines and the spline coefficients were esti-

mated by the expectation–maximization (EM) algorithm; Yao et al. (2005a) applied the local linear smoothers to estimate the mean and the covari-

ance functions. Morris and Carroll (2006) generalized the linear mixed model to the functional mixed model framework, with model fitting done

by using a Bayesian wavelet-based approach. In Cao et al. (2012), a polynomial spline estimator is proposed for the mean function of functional

data together with a simultaneous confidence band. These non-parametric methods apply the pre-specified basis expansion, for example, polyno-

mial splines, local linear smoothers, wavelet and so on, to fit the unknown mean function. The convergence rates achieve either the optimal non-

parametric rate or parametric rates depending on how dense the observed points are for each subject.

Even though FDA has received considerable attention over the last decade, most of the existing approaches still focus on 1D functional data. The

high intrinsic dimensionality of these data poses challenges for both theory and computation; these challenges vary with how the functional data were

sampled. Hence, few are developed for general multidimensional functional data. Recently, several attempts have been made to extend these non-

parametric methods for spatial and image data. Y. Wang et al. (2020) used bivariate splines over triangulations to handle an irregular domain of the

images that is common in brain imaging studies. The proposed spline estimators of the mean functions are shown to be consistent and asymptotically

Abbreviations: FDA, functional data analysis; FPCA, functional principal component analysis; DNN, deep neural networks.
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normal. However, the triangularized bivariate splines are designed for 2D functions only. Extending spline basis functions for general d-dimensional

data observed on an irregular domain is very sophisticated and becomes extremely complex as d increases. B. Wang et al. (2014) proposed a regular-

ized Haar wavelet-based approach for the analysis of 3D brain image data in the framework of functional linear regression models.

Another popular method is functional principal component analysis (FPCA) which is an extension of multivariate principal component analysis;

see Hall et al. (2006) and Yao et al. (2005b), for example. Recently, there are a few studies on 2D FDA. Zhou and Pan (2014) proposed a smooth FPCA

for 2D functions on irregular planar domains; their approach is based on a mixed effects model that specifies the principal component functions as

bivariate splines on triangulations and the principal component scores as random effects. Lila et al. (2016) proposed an FPCA model that can handle

real functions observable on a 2D manifold. Chen and Jiang (2017) extended it to analyse functional/longitudinal data observed on a general d-

dimensional domain. When applying FPCA, how to choose the number of eigenfunctions is an important practical issue without a satisfactory theo-

retical solution. Presumably, the larger the number of eigenfunctions, themore flexible the approximation would be, and hence, the closer to the true

curve. However, a large number of eigenfunctions always result in a complex model which introduces difficulties to follow-up analysis.

For many years, the use of neural networks has been one of the most promising approaches in connection with applications related to

approximation and estimation of multivariate functions (see, e.g., Anthony & Bartlett, 2009; Ripley, 2014). Recently, the focus is on multilayer

neural networks, which use many hidden layers, and the corresponding techniques are called deep learning. Under the non-parametric regression

model, via sparsely connected deep neural networks, Schmidt-Hieber (2020) and Liu et al. (2021) showed that the L2 risk of the least squares neu-

ral network regression estimator achieves the same minimax rate of convergence (up to a logarithmic factor) as proposed in Stone (1982). Further-

more, this neural network estimator does not suffer the curse of dimensionality which is a classical drawback in the traditional non-parametric

regression framework. Bauer and Kohler (2019) have also obtained similar results under the deep learning framework via a different activation

function. Liu et al. (2019) further removed the logarithmic factors to achieve the exact optimal non-parametric rate.

Although considerable advances have been achieved in deep learning research, from the statistical perspective, its application and theoretical

research is still in its infancy stage (Fan et al., 2019). There are many technical challenges left for statisticians. For example, the availability of scal-

able computing and stochastic optimization techniques are challenging for developing statistical asymptotic properties. Rossi et al. (2005)

extended the radial basis function networks and multilayer perceptron models to functional data inputs. However, neither the consistency of the

proposed estimator nor deep neural network architectures have been considered in their work. Recently, there are some works proposed for deep

learning algorithms from the statistical point of view (Thind et al., 2020a, 2020b). Motivated by these desiderata, the main goal of this article is to

provide a novel method of FDA in the deep neural network framework.

The contributions of the present paper are fourfold. First, to our best knowledge, this is the first work on proposing a deep neural networks

(DNN)-based estimator for FDA. An R package ‘FDADNN’ has been developed and is available from the GitHub website. Second, we develop the

convergence rate (in empirical norm) of the proposed neural networks estimator. It is well known that when the observed points come from a

hypercube, that is, [0, 1]d, d¼3 for 3D imaging study, the non-parametric convergence rates are slower than the optimal non-parametric rate. This

means that no statistical procedure can perfectly recover the signal pointwisely. However, by borrowing the advantage from the deep learning

domain, the convergence rate of the proposed DNN estimator does not depend on the dimension d. Third, our proposed DNN estimator is unified

for any dimensional functional data, which has broader and more flexible applications. Finally, we do not assume additional or complex structure

for the true mean function, for example, additive models or single-index models. As in the deep learning domain, the true regression functions are

assumed to be constructed in a modular form and the modularity of the system can be fairly complex, which resolve the misspecification issue.

Different from the existing neural network literature on non-parametric regression (Bauer & Kohler, 2019; Liu et al., 2021; Schmidt-

Hieber, 2020) which only handle i.i.d. data, we focus on FDA where each subject is a random curve in a hypercube. Because of this special data

structure, the major challenge becomes to deal with the correlation among the N evaluation points in the framework of neural networks, which

has not been achieved in the existing works. It is not surprising that the convergence rate decreases with n (the number of subjects) as well as N.

The paper is structured as follows. Section 2 provides the model setting in FDA, introduces multilayer feed-forward artificial neural networks

and discusses mathematical modelling. The implementation on hyperparameter selections also is included in Section 3. The theoretical properties

of the proposed DNN estimator can be found in Section 4. In Section 5, the finite sample performance of proposed neural network estimator is

presented. The proposed method is applied to the spatially normalized positron emission tomography (PET) data from Alzheimer Disease Neuro-

imaging Initiative (ADNI) in Section 6 and some concluding remarks are provided in Section 7. The proof of the main result together with addi-

tional discussion can be found in Appendix S1.

2 | MODELS AND DNN ESTIMATOR

2.1 | FDA model

Denote by Yij the jth observation of the random curve ξi(�) at grid points Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni. For simple notations, we examine the equally spa-

ced design; in other words, Xij ¼Xj ¼ j=N. The main results can be extended to irregularly spaced design. Without loss of generality, let

2 of 13 WANG ET AL.



Xj ¼ðXj1,…,XjdÞ� ½0,1�d. For the ith subject, its sample path Xj,Yij

� �
consists of the noisy realization of the Gaussian process ξi(X) in the sense that

Yij ¼ ξi Xj

� �þϵiðXjÞ, and ξiðXÞ,X� ½0,1�d
n o

are i.i.d. copies of the process ξðXÞ,X� ½0,1�d
n o

which is L2; that is, E
Ð
½0,1�dξ

2ðXÞdX< þ∞. The error

term ϵi(Xj) has mean zero and finite variance.

In this work, we consider the following classical FDA model:

Yij ¼ ξi Xj

� �þϵi Xj

� �
¼ f0 Xj

� �þη Xj

� �þϵi Xj

� �
, i¼1,2,…,n, j¼1,2,…,N,

ð1Þ

where f0 :ℝd !ℝ, EðYijÞ¼ f0 Xj

� �
, η(�) is a Gaussian process characterizing individual curve variations from f0(�) with mean zero and

CovðηðXjÞ,ηðX j0 ÞÞ :¼GðXj,X j0 Þ. Let ϵi Xj

� �¼ τ Xj

� �
εij, where εijs are independent normal random variables and τ(X) is the standard deviation function

bounded above zero for any X� [0, 1]d. By Mercer's theorem, the covariance function G(X,X0) has the following spectrum decomposition:

GðX,X0Þ ¼
X∞

k¼1
λkψkðXÞψkðX0Þ,

where λkf g∞k¼1 and ψkðXÞf g∞k¼1 are the eigenvalues and eigenfunctions of G(X,X0), and ψkðXÞf g∞k¼1 are orthonormal bases in L2([0, 1]
d).

2.2 | Deep neural networks

Before conducting the estimation of the mean function f0 in (1) via the DNN, let us briefly introduce the necessary notations and terminologies

used in the neural networks. From the high level, typical DNN use a composition of a series of simple non-linear functions to model non-linearity;

that is,

hL ¼ gL ∘gL�1 ∘… ∘g1ðxÞ, x�ℝd,

where ∘ denotes a composition of two functions and L is called the number of hidden layers or depth of a DNN model. One can define

hl ¼ glðhl�1Þ for each 1≤ l ≤ L recursively and h0 ¼ x. ‘Deep’ in deep neural networks refers to the use of multiple layers in the network. In the

feed-forward neural network, the information moves in only one direction forward from the input layers, through the hidden layers and to the

output node layers. In this kind of neural nets, there is a specific choice of gl: glðhl�1Þ¼ σðWlhl�1Þ, l¼1,…,L, where Wl is a pl� pl+1 weight matrix

in the lth layer and p¼ðp0,…,pLþ1Þ is the width vector. The non-linear function σ is called the activation function. Here, we study the popular rec-

tifier linear unit (ReLU) activation function applied element-wise ½σðxÞ�j ¼maxðxj,0Þ, j¼1,…,d. For any vector v¼ðv1,…,vdÞ�ℝd, define the

shifted activation function σv :ℝd !ℝd as ½σvðxÞ�j ¼ σðxj�vjÞ, j¼1,…,d. We call v the activation vector. The DNN model is then defined as

f :ℝp0 !ℝpLþ1 ,

fðxÞ¼WLσVLWL�1σVL�1…W1σV1W0x: ð2Þ

To fit networks with data generated from the d-dimensional hypercube functional data model, we must have p0 ¼ d and pLþ1 ¼1. Without

loss of generality, we assume for any f �F , its empirical L2 norm is bounded; that is, kfkN ¼ N-1PN
j¼1f

2ðxjÞ
� �1=2

≤Cf <∞.

Although the depth and width of the neural nets can be extremely large, overfitting and computational burden are serious problems in such

networks. To overcome these issues, the networks are modelled by assuming that each unit will be active only for a small fraction of the data to

avoid overfitting. Smaller weights in a neural network can result in a model that is more stable and less likely to overfit the training dataset, in turn

having better performance when making a prediction on new data (Srivastava et al., 2014). Therefore, we assume that there are only a few non-

zero network parameters. Equivalently, we define the sparse neural networks and add constrains on the maximum-entry norm and non-zero

entries of the weight matrix Wl and the activation vector vl. The sparse neural networks for our functional data model are given by

FðL,p,sÞ

¼ fð�Þof the form ð2Þ : max
l¼0,…,L

kWlk∞þkvlk∞ ≤1,
PL
l¼0

kWlk0þkvlk0 ≤ s
� 	

,
ð3Þ

where s > 0, k � k∞ denotes the maximum-entry norm and k � k0 denotes the number of non-zero entries. Let v0 be a zero vector for simplicity.

The selecting procedures of unknown tuning parameters (L, p, s) shall be given in Section 3.
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2.3 | Deep neural network estimator

In the functional data regression model, the common objective is to find an optimal estimator by the least squares loss function. In the neural

network setting, this coincides with training neural networks by minimizing the empirical risk over all the training data. In particularly, given the

networks in (3) and denote F ¼FðL,p,sÞ, the proposed DNN estimator is defined as

f̂ ¼ argmin
f � F

1
N

XN

j¼1
�Y �j� f Xj

� �� �2
, ð4Þ

where �Y �j ¼ 1
n

Xn

j¼1
Yij. Different from classical non-parametric estimators, f̂ has no analytical expression or basis expansion expression. Hence, to

better understand the reasons that this DNN estimator has excellent performance, we first project f0 onto the network space F , namely,

f ∗ :¼ argminf � Fkf0� fk∞. In other words, f∗ is the best possible approximation of f0 in F . Note that

1
N

XN

j¼1
�Y �j� f̂ðXjÞ

� �2
≤
1
N

XN

j¼1
�Y �j� f ∗ ðXjÞ

� �2
,

which is equivalent to

1
N

XN

j¼1
f0ðXjÞ� f̂ðXjÞþ �ρ�j

� �2
≤
1
N

XN

j¼1
f0ðXjÞ� f ∗ ðXjÞþ �ρ�j

� �2
,

where �ρ�j ¼ 1
n

Xn

i¼1
ρij ¼ η Xj

� �þ1
n

Xn

i¼1
ϵi Xj

� �
. Hence, we follow the conventional approximation–estimation decomposition (or bias–variance

trade-off) to decompose the empirical norm

kf̂� f0kN ¼ 1
N

XN

j¼1
f̂ðXjÞ� f0ðXjÞ

� �2

as

kf̂� f0kN ≤
1
N

XN

j¼1
f ∗ ðXjÞ� f0ðXjÞ

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

approximation error

þ 2
N

XN

j¼1
f̂ðXjÞ� f ∗ ðXjÞ

� �
�ρ�j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

estimation error

: ð5Þ

The above equation indicates that the empirical norm of the estimator is bounded by two items. The first item is the approximation error and

essentially determined by the distance between the network class F and the true function class f0, which can be arbitrarily small according to

Yarotsky (2017). From the statistical point of view, the second item is the estimation error and is a weighted average of a random process. It is

affected by the parameters in F , the true mean function class and the characteristic of the error terms.

3 | IMPLEMENTATION

In this section, we discuss the detailed computational procedure for the proposed DNN estimator in (4). The following proposed computational

procedure can be easily realized via R package ‘FDADNN’ which is available at https://github.com/FDASTATAUBURN/FDADNN.

3.1 | Neural network's architecture selection

Tuning parameters are crucial as they control the overall behaviour of the proposed estimator and the learning process. In machine learning, those

parameters are called network architecture parameters. A neural network's architecture can simply be defined as the number of layers L and the

number of hidden neurons within these layers p. In our considered sparse neural network space F , the sparse parameter s should also be carefully

selected. Note that in the practice, it's unrealistic to control the exact number of inactive nodes, so instead of using sparse parameter s, we add an

L1 penalty to control the number of active nodes in each layer during the optimization procedure. Denote ζ as the L1 regularization factor. In the

following, we utilize ζ to replace the sparse parameter s in the numerical analysis. The ultimate goal is to find an optimal combination of (L,p, ζ)
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that minimizes a pre-defined loss function to give better results. There is a fairly large amount of literature discussing the optimization selection,

such as grid search, random search and Bayesian optimization. Considering the computational efficiency and statistical properties, we recommend

the following data-adaptive selection procedure in the practical application. The further justification of the optimization algorithm is beyond the

scope of this work and shall be anther interesting and challenging topic for the future work.

We set the same neuron numbers for each layer for simplicity, that is, p¼ðp,…,pÞ, and we follow the rule that p is increasing as n and N are

increasing. We use K-fold cross-validation to choose (L, p, ζ); that is,

Lopt,popt,ζopt
� �¼ arg min

ðL,p,sÞ � Θ

XK

k¼1

XN

j¼1
b�Yð�kÞ
�j L,p,ζð Þ� �Y

ðkÞ
�j

� �2

,

where Θ is an architecture parameter space which contains pre-selected choices of L,p,ζð Þ. Typically, K¼5 or 10. For the kth cross-validation, at

the jth grid point, b�Yð�kÞ
�j L,p,ζð Þ denotes the estimated output given L,p,ζð Þ and �Y

ðkÞ
�j is the average of observations.

3.2 | Training neural networks

The minimization in (4) is usually done via stochastic gradient descent (SGD). In a way similar to gradient descent, in each update, a small subsam-

ple called a batch, which is typically of size B¼32 to 512, is randomly drawn and the gradient calculation is only on the subsample instead of the

whole training dataset. This saves considerably the computational cost in calculation of gradients. By the law of large numbers, this stochastic gra-

dient should be close to the full sample one, albeit with some random fluctuations. We choose B¼32 or 64 batches depending on the perfor-

mance of convergence. A pass of the whole training set is called an epoch. Typical choices of epochs are 200, 300 and 500. The number of epochs

defines the number of times that the learning algorithm works through the entire training dataset. The learning rate, which controls how much

parameters are changed in a single update in computing gradients in neural networks, is chosen as 0.001. In practice, given different data struc-

tures and minimization algorithms, the neural networks training could be challenging. The readers are referred to recent monographs (Emmert-

Streib et al., 2020; Fan et al., 2019) for a general discussion of these numerical challenges.

There are certainly some challenges for SGD to train DNN. For example, albeit good theoretical guarantees for well-behaved problems, SGD

might converge very slowly; the learning rates are difficult to tune (Allen-Zhu et al., 2019). To address these challenges, several variants gradient-

based optimization algorithms are introduced, such as Adam, RMSprop and Adadelta. Instead of the classical SGD procedure, Adam is a method

for efficient stochastic optimization that only requires first-order gradients with little memory requirement. Hence, it is well suited for problems

when there are large sample sizes and parameters (Kingma & Ba, 2015). In our numerical studies, Adam provides the best results and is the most

computationally efficient among these candidates. We recommend Adam in the real-life applications.

4 | THEORETICAL PROPERTIES OF THE DNN ESTIMATOR

In this section, we develop the convergence rate of the proposed DNN estimator in (4). For simple notations, log means the logarithmic

function with base 2. For sequences (an)n and (bn)n, an� bn means an≤ c1bn and an≥ c2bn where c1 and c2 are absolute constants for any n. Let

CN ¼ ½GðXj,X j0 Þ=N�Nj,j0¼1
be the N�N kernel matrix corresponding to the covariance function G. We now introduce the main assumptions:(A1) The

true regression function f0 �G q,d,t,β,Kð Þ. (The definition of G q,d,t,β,Kð Þ is given in Appendix S1.)

(A2) The standard deviation function τ(�) is bounded for any x � [0, 1]d.

(A3) The eigenvalues of G(� , �) satisfy λ1 ≥ λ2 ≥ … ≥ 0 and
X∞

k¼1
λk <∞. Moreover, the maximal eigenvalue of the kernel matrix CN satisfies λ1,N ¼

OðN�ϱÞ for some constant ϱ≥0.

(A4) The DNN estimator f̂ �FðL,p,sÞ, where L� logðnNϱÞ, s�ðnNϱÞ 1
θþ1, minl¼1,…,Lpl �ðnNϱÞ 1

θþ1, for θ¼mini¼0,…,q
2β ∗

i
ti
.

Assumption (A1) is a natural definition for neural networks, which is fairly flexible and many well-known function classes are contained in

it. For example, the additive model f0ðxÞ¼
Xd

i¼1
fiðxiÞ can be written as a composition of two functions f0 ¼ g1 ∘g0, with g0ðxÞ¼

f1ðx1Þ,…, fdðxdÞð Þ > and g1ðxÞ¼
Xd

j¼1
xj, such that g0 : ½0,1�d !ℝd and g1 :ℝ

d !ℝ. Here, d¼ðd,d,1Þ and t¼ð1,dÞ. The generalized additive model

f0ðxÞ¼ h
Xd

i¼1
fiðxiÞ

� �
can be written as a composition of three functions f0 ¼ g2 ∘g1 ∘g0, with g0, g1 described above and g2 ¼ h.

Assumption (A2) is a standard assumption for the variance of measurement errors, which requires the bounded variance of measurement

errors over the whole space. This assumption has been widely used in functional data non-parametric regression literature; see Cao et al. (2012)

and Yao et al. (2005a), for example. Assumption (A3) is a standard eigenvalue assumption for the Mercer kernel, and it is a widely used assumption

for covariance functions in FDA literature; see Cao et al. (2016) and Li and Hsing (2010), for example. We also provide two examples to demon-

strate that (A3) is a reasonable assumption in the supporting information. By Braun (2006), Assumption (A3) trivially holds for ϱ¼0 (see
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Propositions A.1 and A.2 in the supporting information) and may even hold for some positive ϱ as revealed by Example 1 in Section A in the

supporting information. Assumption (A4) depicts the architecture and parameters' setting in the network space.

We assume a natural compositional function class for the true mean function f0:

f0 ¼ gq ∘gq�1 ∘… ∘g1 ∘g0,

where gi : ai ,bi½ �di ! aiþ1,biþ1½ �diþ1 , gi ¼ gij
� � >

j¼1,…,diþ1
, i¼1,…,q, with unknown parameters di and q.

The following theorem establishes the convergence rate of the DNN estimator f̂ under the empirical norm. Its proof and some technical

lemmas will be provided in the supporting information.

Theorem 1. Under Assumptions (A1)–(A4), with probability greater than 1� 2
nNϱ

� �dlogðnNϱÞeþ1 !1, we have

kf̂� f0k2N ≤ cðnNϱÞ� θ
θþ1log6ðnNϱÞ, ð6Þ

where ϱ ≥ 0, θ¼mini¼0,…,q
2β ∗

i
ti
, c is a constant only depending on t, d, β which are defined in (A.1) in Appendix S1.

5 | SIMULATION

To illustrate how the introduced non-parametric regression estimators based on our proposed neural networks method behave in case of finite

sample sizes, we conduct substantial simulations for both 2D and 3D functional data. We use the empirical L2 risk N�1
XN

j¼1
f0ðXjÞ� f̂ðXjÞ

� �2
as

the criterion to evaluate the performance of estimators.

5.1 | 2D simulation

In this simulation, the 2D images are generated from the model:

Yij ¼ f0 Xj

� �þη Xj

� �þϵi Xj

� �
, ð7Þ

where Xj ¼ðX1j ,X2jÞ¼ j1=N2, j2=N2ð Þ, 1≤ j1, j2≤N2 are equally spaced grid points on the [0, 1]2 and N2
2 ¼N. To demonstrate the practical perfor-

mance of our theoretical results, we consider the following two mean functions:

• Case 1: f0ðx1j,x2jÞ¼ �8

1þexp cotðx2
1j
Þcosð2πx2jÞ

� �,
• Case 2: f0ðx1j,x2jÞ¼ log sinð2πx1jÞþ2jtanð2πx2jÞjþ2

� �
,

and the corresponding images are shown in the first row of Figure 1. To simulate the within-subject dependence for each subject i, we gener-

ate η(�) from a Gaussian process with mean 0 and the covariance function G0 xj ,x j0
� �¼X2

k¼1
cos 2πðxkj�xkj0 Þ

� �
, j, j0 ¼1,…,N. We generate ϵi xj

� �¼
εij�i:i:d:Nð0,σ2Þ for i¼1,…,n, j¼1,…,N. The noise level is set to be σ¼1,2. We consider the sample size n¼50,100,200 and for each image, let

N2 ¼15 or 25, which means for each 2D image, the number of observational points (pixels) is set to be N¼N2
2 ¼225 or 625. The neural net-

work (4) is trained through the optimizer Adam with architecture parameters (L, p, ζ) selected from L� {3, 4}, p� {100, 300, 500, 1000, 2000},

ζ� {10�4, 10�5, 10�6, 10�7} and the learning rate 0.001. The tenfold cross-validation method discussed in Section 3 is applied to select the optimal

architecture parameters in each Monte Carlo simulation. Epochs are selected from 300 to 500, and the batch size is chosen as 32. We find that

the convergence of algorithms is promising.

The alternative approach for 2D case we considered is a 2D regression spline method (bivariate spline). With regard to the variety of modifi-

cations of this approach known in the literature, we focus on the version for 2D FDA in Lai and Wang (2003). Let B > ðxÞ¼fBmðxÞgm �M be the

set of bivariate Bernstein basis polynomials, where M stands for an index set of Bernstein basis polynomials. Then we can represent any bivariate

function f(x) by fðxÞ≈B > ðxÞγ where γ > ¼ ðγm,m�MÞ is the bivariate spline coefficient vector. The estimator f̂BS is implemented by the R pack-

age BPST, which was developed by Lai and Wang (2003).

The second and third rows in Figure 1 depict the proposed neural network estimator f̂DNN and the bivariate spline estimator f̂BS when

n¼200, N¼625 and σ¼1. Table 1 summarizes the empirical L2 risk and standard deviation of estimators f̂DNN and f̂BS under 100 simulations for

two different noise levels. From the above figure and table, one can see that our method and the bivariate spline method have fairly similar
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estimation performances. As the bivariate spline estimator is able to achieve the optimal non-parametric convergence rate (Y. Wang et al., 2020),

the comparable estimation results in Tables 1 and 2 also support the asymptotic convergence rate of our proposed estimator f̂DNN in Theorem 1.

5.2 | 3D simulation

For 3D simulation, the images are generated from model (7) in 2D case. The true mean function is f0ðx1j ,x2j,x3jÞ¼ exp 1
3x1jþ 1

3x2jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3jþ0:1

p� �
,

where ðx1j ,x2j ,x3jÞ¼ j1
N3
, j2
N0
3
, j3
N00
3

� �
, 1≤ j1≤N3, 1≤ j2 ≤N30, 1≤ j3≤N30 0 are equally spaced grid points in each dimension on [0, 1]3 and N3N

0
3N

00
3 ¼N.

Here, we mimic the number of voxels of the real data, which usually have different values for N3, N30 and N30 0. For each subject, the within-imaging

dependence η(�) is generated from a Gaussian process with mean 0 and the covariance function G0 xj ,x j0
� �¼X3

k¼1
cos 2πðxkj�xkj0 Þ

� �
, j, j0 ¼1,…,N.

Measurement errors ϵi(�) are generated the same as 2D case. We consider the sample size n¼50,100,200 and N¼3000 (20�15�10) and 4500

(30�15�10). Results of each setting are based on 100 simulations. The training of the neural networks architecture (L, p, s) follows the same

procedures as in the 2D case. Architecture parameters (L, p, ζ) are selected from L� {3, 4}, p� {100, 300, 500, 1000, 2000, 5000},

ζ� {10�4, 10�5, 10�6, 10�7}. The triangularized bivariate splines method proposed in Y. Wang et al. (2020) is designed for 2D functions only.

Extending spline basis functions for 3D functional data is very sophisticated, and to our best knowledge, it is not available for 3D FDA yet. Hence,

we only conduct 3D numerical analysis with our proposed DNN method. To exam the performance of the estimator f̂, we also summarize the

F IGURE 1 2D simulation. Left: from the top to bottom, they are the true function f0 (Case 1) and its estimators f̂DNN and f̂BS. Right: from the
top to bottom, they are the true function f0 (Case 2) and its estimators f̂DNN and f̂BS (n¼200, N¼625 and σ¼1)
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empirical L2 risk and standard deviation of estimators f̂DNN in Table 3. It is clear to find that the empirical risk decreases when sample sizes or

observed voxel numbers increase for both noise levels, which supports our theoretical findings. The mean function f0 and its DNN estimator are

presented in Figure 2. It is easy to conclude that the DNN estimator follows the same pattern as the true mean function.

6 | ADNI PET DATA ANALYSIS

The dataset used in the preparation of this article was obtained from the ADNI database (adni.loni.usc.edu). The ADNI is a longitudinal multicentre

study designed to develop clinical, imaging, genetic and biochemical biomarkers for the early detection and tracking of AD. From this database,

we collect PET data from 79 patients in an AD group. This PET dataset has been spatially normalized and post-processed. These AD patients have

three to six times of doctor visits, and we only select the PET scans obtained at the third visits. Patients' age ranges from 59 to 88, and the aver-

age age is 76.49. There are 33 females and 46 males among these 79 subjects. All the scans were reoriented into 79 � 95 � 69 voxels, which

TABLE 1 The average empirical L2 risk and their standard deviations of the estimators of f0 (Case 1) across 100 simulation runs (2D case)

f0ðx1j ,x2jÞ¼ �8

1þexp cotðx2
1j
Þcosð2πx2jÞ

� �
DNN Bivariate spline

σ N n L2 risk SD L2 risk SD

1 50 0.1327 0.1905 0.6030 0.0418

225 100 0.0797 0.1244 0.5757 0.0249

200 0.0432 0.0574 0.5584 0.0120

50 0.0770 0.0497 0.1497 0.0462

625 100 0.0535 0.0368 0.1136 0.0214

200 0.0352 0.0295 0.0987 0.0098

2 50 0.1880 0.1521 0.6564 0.1009

225 100 0.0918 0.0793 0.6035 0.0619

200 0.0593 0.0529 0.5765 0.0316

50 0.1594 0.1555 0.2241 0.1218

625 100 0.0862 0.0755 0.1430 0.0557

200 0.0420 0.0412 0.1098 0.0232

TABLE 2 The average empirical L2 risk and their standard deviations of the estimators of f0 (Case 2) across 100 simulation runs (2D case)

f0ðx1j ,x2jÞ¼ log sinð2πx1jÞþ2jtanð2πx2jÞjþ2
� �

DNN Bivariate spline

σ N n L2 risk SD L2 risk SD

1 50 0.0731 0.0446 0.0804 0.0382

225 100 0.0437 0.0249 0.0517 0.0186

200 0.0254 0.0217 0.0351 0.0100

50 0.0560 0.0206 0.0751 0.0351

625 100 0.0351 0.0128 0.0541 0.0254

200 0.0245 0.0085 0.0383 0.0110

2 50 0.1190 0.0975 0.1290 0.0950

225 100 0.0829 0.0681 0.0931 0.0597

200 0.0348 0.0276 0.0464 0.0251

50 0.0573 0.0264 0.1213 0.0859

625 100 0.0331 0.0132 0.0827 0.0630

200 0.0139 0.0059 0.0502 0.0251

8 of 13 WANG ET AL.

https://adni.loni.usc.edu


means each patient has 69 sliced 2D images with 79 � 95 pixels. For the 2D case, it means each subject has N¼7,505¼79�95 observed pixels

for each selected image slice. For the 3D case, the observed number of voxels for each patient's brain sample is N¼79�95�69, which is more

than 0.5 million.

For the 2D case, we select the 20th, 40th and 60th slices from 69 slices for each patient. We first take average across 79 patients for each

slice (the first row in Figure 3). Then, based on the averaged images, we obtain the proposed DNN estimators for each slice (the second row in

Figure 3). We also recover the image in higher resolutions with 512 � 512 pixels, instead of the original 95 � 69 pixels for each slice (the third

row in Figure 3). The neural network (4) is trained through the optimizer Adam with architecture parameters (L, p, ζ) selected from L � {3, 4}, p �

{500, 1000}, ζ � {10�5, 10�6, 10�7} and the learning rate 0.001. The tenfold cross-validation method selects the optimal architecture parameters

Lopt ¼3, popt ¼1000 and ζopt ¼10�7. We used 300 to 500 epochs and 2 to 8 as batch sizes given different slices.

TABLE 3 The average empirical L2 risk and their standard deviations of the DNN estimator of f0 across 100 simulation runs (3D case)

σ N n L2 risk SD

1 50 0.0028 0.0020

3000 100 0.0011 0.0006

200 0.0006 0.0004

50 0.0007 0.0007

4500 100 0.0005 0.0007

200 0.0003 0.0004

2 50 0.0030 0.0024

3000 100 0.0012 0.0007

200 0.0007 0.0005

50 0.0009 0.0007

4500 100 0.0005 0.0008

200 0.0003 0.0005

F IGURE 2 Two different angles (left and right panels) to view the true mean function and the DNN estimator in the 3D simulation case
(n¼200,N¼4500,σ¼1)
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In the 3D case, there are 79 patients, and totally 79 � 95 � 69 voxels. Same as the 2D case, we first average the total 79 3D scans into one

3D scan and then perform neural networks to train the model based on the averaged 3D image. In the bottom row of Figure 3, we break down

the recovered 3D image and show the recovered 20th, 40th and 60th slices. The neural network (4) is trained through the optimizer Adam with

architecture parameters (L, p, ζ) selected from L � {3, 4}, p � {1000, 1500}, ζ � {10�5, 10�6, 10�7}. The tenfold cross-validation method selects

the optimal architecture parameters Lopt ¼4, popt ¼1500 and ζopt ¼10�7. According to our numerical experience, we find 300 epochs and 64 batch

sizes providing the reasonably well results.

In Figure 4, we also recover the image in higher resolutions with 128 � 128 � 128 voxels, which means instead of the original 79 � 95 � 69

voxels, we can provide the estimated image slices with higher resolutions (128 � 128 pixels, instead of the original 79 � 95 pixels) at finer grid

points (128 points, instead of the original 69 points).

For model assessment, we split the data into to training and testing groups, with 60 patients and 19 patients separately. Table 4 summarizes

the performance of the proposed estimator based on empirical L2 risks. We conclude that the proposed functional regression model and the DNN

estimator have satisfactory numerical results in this real application.

F IGURE 3 From top to bottom are averaged images f�Y �jg7505j¼1 , recovered images f̂ðx1j ,x2j0 Þ, j¼1,…,79, j0 ¼1,…,95, recovered high-resolution
(128�128) images f̂ðx1j ,x2jÞ, j¼1,…,128 and recovered images from 3D image. Left: the 20th slices; middle: the 40th slices; right: the 60th slices
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7 | DISCUSSION

In this work, we resolve the model misspecification issue in multidimensional FDA via the promising technique from the deep learning domain.

By properly choosing network architecture, our estimator achieves the optimal non-parametric convergence rate in the empirical norm. To

our best knowledge, this is the first piece of work in FDA, which yields attractive empirical convergence rate for multidimensional FDA and in

the meanwhile is free from model misspecification. Numerical analysis demonstrates that our approach is useful in recovering the signal for

imaging data. Some interesting future works may include the functional linear regression model and classification problems in the framework

of DNN.

F IGURE 4 Recovered higher resolutions of selected nine slices in the 3D case

TABLE 4 The empirical L2 risk (�10�3) for ADNI data

2D case

20th 40th 60th 3D case

Training 1.6 0.8 0.6 0.3

Testing 3.1 1.5 0.9 1.2
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